Ameba IoT Docs
Products Center
Ameba SDK
Ameba Solutions
0.1 GCC Build Environment
0.2 GDB Debug
0.3 Build System
0.4 SDK Example
0.5 Flash & RAM Layout
0.6 User Config
0.7 Tools
0.8 AT Commands
0.9 Virtual File System
0.a Flash Translation Layer
1.0 Memory Management & Cache
1.1 Boot Process
1.2 OTA
1.3 OTPC
1.4 Chip Enable
1.5 Inter Processor Communication
1.6 Pin Multiplexing
1.7 GPIO & Pin Control
1.9 Power Saving
2.0 Wi-Fi Basic Mode
2.1 WHC Bridge
2.2 WHC FullMAC
2.3 Wi-Fi R-Mesh
2.4 Wi-Fi CSI
2.5 Wi-Fi Adaptivity Test
2.6 Wi-Fi API Reference
3.1 Security & Encryption
3.2 True Random Number Generator
3.9 Crypto Engine
3.a ECDSA Engine
3.b EDDSA Engine
3.c RSA Engine
3.d AP Secure Service
4.1 AI
Supported SoCs
Overview
Build Tensorflow Lite Micro Library
Build Examples
Tutorial
4.2 AIVoice
4.3 Multimedia
4.4 DSP
6.1 Mass Production
6.2 MP Tools
7.1 USB Host & Device
8.1 DMA Controller
8.2 PSRAM
8.3 Thermal Meter
8.4 ADC
8.5 IR
8.6 LED Controller
8.7 Cap-Touch
8.8 Key-Scan
8.9 RTC-IO
8.a LCD Controller
Ameba IoT Docs
TensorFlow Lite for Microcontrollers (TFLM)
TensorFlow Lite for Microcontrollers (TFLM)
Supported SoCs
Overview
Build Tensorflow Lite Micro Library
Build Examples
Tutorial
MNIST Introduction
Step 1. Train a Model
Step 2. Convert to Tflite
Step 3. Optimize Tflite and Convert to C++
Step 4. Inference on SoC with Tflite-Micro
Step 5. Build Example